Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma

نویسندگان

  • Vered Tzin
  • Ilana Rogachev
  • Sagit Meir
  • Michal Moyal Ben Zvi
  • Tania Masci
  • Alexander Vainstein
  • Asaph Aharoni
  • Gad Galili
چکیده

Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a preferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and flavour qualities as well as discovering novel fruit-specialized metabolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Levels of Aroma and volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

The tomato (Solanum lycopersicum) fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore d...

متن کامل

Altered metabolite accumulation in tomato fruits by coexpressing a feedback‐insensitive AroG and the PhODO1 MYB‐type transcription factor

Targeted manipulation of phenylalanine (Phe) synthesis is a potentially powerful strategy to boost biologically and economically important metabolites, including phenylpropanoids, aromatic volatiles and other specialized plant metabolites. Here, we use two transgenes to significantly increase the levels of aromatic amino acids, tomato flavour-associated volatiles and antioxidant phenylpropanoid...

متن کامل

Glyphosate Induces 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase in Potato (Solanum tuberosum L.) Cells Grown in Suspension Culture.

The activity of the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, varies during the growth cycle of Solanum tuberosum L. cv superior cells in suspension culture. Maximum specific enzyme activity was observed midway through the linear phase of growth. When mid-log phase cells are exposed to glyphosate, the specific activity of the enzyme increases s...

متن کامل

Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).

A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase ...

متن کامل

Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.

In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013